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Abstract Some regions of North America exhibit nonnormal temperature distributions. Shorter-than-Gaussian
warm tails are a special subset of these cases, with potentially meaningful implications for future changes in
extreme warm temperatures under anthropogenic global warming. Locations exhibiting shorter-than-Gaussian
warm tails would experience a greater increase in extremewarm temperature exceedances than a location with
a Gaussian or long warm-side tail under a simple uniform warm shift in the distribution. Here we identify
regions exhibiting such behavior over North America and demonstrate the effect of a simple warm shift on
changes in extreme warm temperature exceedances. Some locations exceed the 95th percentile of the original
distribution by greater than 40% of the time after this uniform shift. While the manner in which distributions
change under global warmingmay bemore complex than a simple shift, these results provide an observational
baseline for climate model evaluation.

1. Introduction

Global warming is often presented in terms of changes in mean temperature; however, changes in extremes
are likely to have the most severe impact on the environment and society [Seneviratne et al., 2012]. Several
recent observational studies present evidence of changes in temperature extremes over the past several
decades [Donat et al., 2013; Fischer and Knutti, 2014; Perkins et al., 2012] with attribution of these changes
largely due to anthropogenic forcing [Christidis, 2005; Morak et al., 2013]. Overall, observed changes have
been relatively similar in magnitude for the cold and warm tails of the temperature probability distribution
function (PDF), with some exceptions [Morak et al., 2013]. For example, warming of the cold tail is greater
in magnitude than warming of the warm tail in regions experiencing snow and ice retreat [Kharin et al.,
2007]. Future changes in temperature extremes are anticipated to be much greater than those observed with
large increases in the number of extreme warm events and large decreases in the number of extreme cold
events [Coumou and Robinson, 2013; Kharin et al., 2013; Kirtman et al., 2013; Zwiers et al., 2011]. Such changes
would expose vulnerable populations to unprecedented heat extremes [Meehl et al., 2009; Rowe and Derry,
2012; Sillmann et al., 2013].

PDFs of daily 2m temperature (T2m) exhibit marked departures from Gaussianity in the tails over much of
North America (NA). Using station data, Cavanaugh and Shen [2014] documented the first four statistical
moments of the temperature PDF, finding large and coherent regions of non-Gaussian distributions. Perron
and Sura [2013] identified regions of non-Gaussian temperature PDFs in global reanalysis and Loikith et al.
[2013] documented wintertime skewness of T2m in reanalysis over NA. Stefanova et al. [2013] showed that
the non-Gaussianity of higher moments of the temperature PDF using station data over the southeastern
United States (U.S.) is modulated by large-scale modes of climate variability such as the El Niño–Southern
Oscillation, signifying an important role of large-scale atmospheric circulation in the shape of the PDF.

As skewness relates to PDF symmetry and the relative length of the distribution tails, changes in skewness
would result in asymmetrical changes in temperature extremes. While such changes have been suggested,
they are rarely statistically significant to date. Donat and Alexander [2012] showed positive, but not signifi-
cant, trends in skewness of gridded annual daily temperature over northern NA. Cavanaugh and Shen
[2014] showed statistically significant trends in temperature skewness over NA at some observation stations.
Rhines and Huybers [2013] and Weaver et al. [2014] demonstrated that observed changes in extremes are
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primarily due to changes in mean temperature and not higher moments at the global scale. Huntingford et al.
[2013] further suggest a lack of change in global temperature variability concurrent with observed warming.
Lau and Nath [2012] showed that increases in extreme warm temperatures over portions of NA as projected
by a high-resolution global climatemodel are largely a result of a shift in themean and not a result of changes
at higher moments. Huybers et al. [2014] suggested, however, that in the case of nonnormal distributions,
warming is unlikely to result in a simple distribution shift due to nonlinear interactions between the mean
and tails. In this case, a purely uniform warming may be implausible at some locations.

It can be expected that advective processes play an important role in the shape of daily temperature PDFs.
Non-Gaussian, approximately exponential, PDF tails are common for several passive tropospheric chemical
tracers and water vapor [Neelin et al., 2010], consistent with expectations from simple mathematical proto-
types for passive tracer advection problems with a forcing that maintains a gradient [e.g., Bourlioux and
Majda, 2002;Majda and Gershgorin, 2010]. This tracer advection paradigm illustrates the relationship between
the structure of distribution tails and physical mechanisms and suggests tail sensitivity in other variables
influenced by advective processes such as T2m. Highlighting implications of non-Gaussian PDFs for future
changes in extreme events, Ruff and Neelin [2012] presented several examples of locations with longer-
than-Gaussian temperature PDF tails using station data. They demonstrated that under the simple scenario
of a uniform warming across the PDF, a location with a long warm tail would experience a relatively smaller
increase in extreme warm temperature exceedances than a location with a Gaussian tail. This implies that
locations with shorter-than-Gaussian warm-side tails would experience a greater increase in warm tempera-
ture exceedances under a simple rightward shift than locations with a Gaussian distribution resulting in
potentially large impacts.

Whether surface temperature warming is to be primarily manifested as a shift, or whether the shape of
non-Gaussian tails may change, the tails of the present-day daily temperature PDF can play a leading role
in indicating how locations will be affected by a warming climate. Recognizing that warming could be
realized in multiple ways, this paper demonstrates the effect of the simplest case, a uniform shift across
the distribution and how extreme warm temperature exceedances are impacted at locations with shorter-
than-Gaussian warm-side distribution tails. Furthermore, it is shown that considering the physically moti-
vated case of a shift leads to variants of tests for non-Gaussianity that can be useful for evaluating tails in
present-day distributions.

2. Data and Methodology

Daily mean T2m data are computed from theWang and Zeng [2014a, 2014b] suite of global land, hourly data
sets [Wang and Zeng, 2013]. Here we use the product combining NASA’s Modern Era Retrospective-Analysis
for Research and Applications reanalysis [Rienecker et al. [2011]] with the Climate Research Unit 3.10 [Mitchell
and Jones, 2005] gridded monthly T2m observations. While this product has inherent uncertainties originat-
ing largely from the reanalysis, it has been validated in recent studies [Loikith et al., 2015a; Loikith et al., 2015b;
Wang and Zeng, 2013; Wang and Zeng, 2014a, 2014b; Wang and Zeng, 2015]. Additional validation is pre-
sented in Figures S1 and S2 in the supporting information. All analysis is performed on anomalies, computed
by removing the daily climatology from each day then removing the linear trend. Results are presented for
winter and summer defined as December-January-February (DJF) and June-July-August (JJA), respectively.
Temperature distributions are computed by binning daily T2m every 1.0°C (0.5°C) for DJF (JJA) with the
smaller bin width for JJA used because of the generally lower daily temperature variance in summer versus
winter. Bin counts are normalized by the maximum count.

For reference, a Gaussian curve is presented for each example. Ruff and Neelin [2012] used the core of the
distribution, defined as all bins exceeding 0.3 of the distribution maximum, to compute the Gaussian fit using
polynomial regression. This reduces the influence non-Gaussian tails have on the standard deviation (σ) of
the distribution. However, in some cases, non-Gaussian behavior within the core can result in a large σ when
estimated in this manner. To avoid such cases, the Gaussian is fit to the core using the σ of the entire distribu-
tion if that value is smaller than the σ estimated from only the core. The 95th percentile of the temperature
distribution is used to define threshold exceedances. A percentile threshold is chosen over a σ threshold so
that all cases, regardless of Gaussianity, have the same frequency of exceedance days in the base climate.
Distribution shifts are demonstrated using a 1σ warming so that all locations experience a similar warming
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relative to variance (i.e., a 2°C warming is relatively small for a location with a σ of 12°C while it is a very large
warming for a location with a σ of 4°C). In addition to this physically based reason, this choice proves highly
useful for assessing statistical significance (see section 3c).

3. Examples of Short Tails and Shift-Induced Exceedances
3.1. Winter

Examples of DJF observed short warm-side tails, spanning a range of NA, are shown in Figure 1 with a pos-
tulated 1σ warm shift and corresponding Gaussian curves (solid lines). For reference, the grid cell locations
are plotted in Figure 3. By definition, P95 is exceeded 5% of the time in the unshifted case. Below each
PDF panel is a plot of the percentage of days exceeding the P95 of the unshifted distribution as a function
of shift in σ. For reference, under the same 1σ warm shift, a Gaussian distribution would exceed its unshifted
P95 by 26%.

The British Columbia example in Figure 1a exhibits a notably short warm tail, with the P95 far to the left of the
range of Gaussian P95s. The effect of a 1σ warm shift is large at this location, with a temperature that is only
exceeded 5% of the time in the unshifted distribution being exceeded nearly half of the time after the shift
while a Gaussian would only exceed the preshifted P95 26% of the time. Here temperature variance is large so
that a 1σ shift equates to a 5.9°C warming; however, Figure 1c shows that the effect is similar for a range of
warmings. For example, a 0.5σwarming (~3°C) results in exceedance frequency greater than 20%, while for a
Gaussian a 0.5σ shift would only result in an increase in exceedances of ~5%.

Similar behavior is seen in Figure 1b where the percentage of days that exceed P95 increases to 46% due to a
1σwarming. For the Great Plains example, 1σ is even greater than for the British Columbia example; however,
Figure 1d shows that regardless of the shift magnitude, the observed distribution shows a much greater
increase in exceedance frequency than the corresponding Gaussian.

Similar effects are found in drastically different climates as exemplified by the Florida and Yucatan examples
in Figures 1e and 1f. For Florida, due to smaller variance, a 1σ shift equates to a 4°C warming which results in a
46% occurrence of exceeding the unshifted P95. In the Yucatan example, a relatively small 2.2°C warm shift
would result in 43% of days exceeding the unshifted P95. As evident in Figure 1h, here a modest 1°C warming
would still result in an increase in threshold exceedances of nearly 15%.

3.2. Summer

Overall, short warm-side tails in JJA tend to not deviate from Gaussian as much as in DJF; however because
this is the warm season, the effect of increased exceedances has implications for heat waves and conse-
quently human health. The coastal Louisiana example (Figure 2a) shows a large increase in exceedances
(+32%) due to a very small warm shift of 1.6°C. In other words, a 1.6°C rightward shift in the distribution would
result in an event that rarely occurs in the current climate to occur one third of the time. Conversely, if the
distribution were Gaussian, that threshold would only be exceeded about one quarter of the time. Similar
results are found in the Ohio Valley example in Figure 2b. The Great Basin and Arctic examples in
Figure 2e and 2f, respectively, show less notable short tails, with the P95 of the unshifted distribution lying
only slighting to the left of the Gaussian envelop in both cases. However, a 1σ shift still results in exceedance
frequencies notably larger than the 26% expected from a Gaussian.

3.3. Measures of Statistical Significance in Departures From Gaussian

The shift of the present-day distribution and the change in exceedances of P95 described above in terms of
practical implications has an important dual role as a test for non-Gaussianity. As elaborated in the SI, these
yield variants of the Kolmogorov-Smirnov/Lilliefors (KS/L hereafter) test for normality [Sheskin, 2003]. Like
KS/L, each is based on the cumulative density function (CDF), but using measures that have a straightforward
physical interpretation is particularly relevant to the case of a warm-side short tail and reduces potential
influence of a long cold side tail. Under these measures, the CDF of the observed time series is compared with
a large ensemble of CDFs sampled from a comparable Gaussian.

Three measures are presented, based on the physically motivated question of how days exceeding a thresh-
old temperature Tt change under a shift of the distribution. The first two are seen in the example PDFs of
Figures 1 and 2, whichmotivate the choice seen in themaps in Figures 3 and 4. First, choosing Tt to be a given
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percentile, here P95, and measuring the separation of Tt between the empirical and reference CDF gives a
statistic at a location in Ts chosen to be relevant to the warm tail (see Figures S3 and S4 for the relation to
the KS/L statistic). Second, the fraction of days exceeding Tt as the distribution is shifted compared to that
of the sampled reference distribution—chosen for its climate implications—is also a variant of the KS/L

Figure 1. DJF temperature anomaly frequency distribution for DJF at the (a) British Columbia, (b) Great Plains, (e) Florida,
and (f) Yucatan grid points. Locations of each grid point are shown in Figure 3. Bin counts (circles, 1°C width) are normalized
by the maximum count and plotted on a log scale. Blue (red) circles are the preshifted (shifted) distributions after a uniform
1σ warming with filled (open) circles indicating bins above (below) the 95th percentile. The blue and red vertical lines
indicate the mean of the preshifted distribution and the shifted distribution, respectively. The solid blue and red curves
are Gaussian fits to the cores of the preshifted and postshifted distributions, respectively. The vertical black line is the
preshifted 95th percentile. The shaded gray region is the 5th to 95th percentile range of 95th percentile temperature values
determined by randomly sampling a Gaussian distribution with the same mean and standard deviation as the Gaussian fit
to the observed distribution (solid blue). The 1σ shift in degrees is shown above the arrow, and the percentage of days
exceeding the observed 95th percentile after the shift is noted on the top right. (c, d, g, h) Plots, corresponding to the
distributions above each panel, of the percentage of days exceeding the observed 95th percentile of the distribution versus
the magnitude of the shift in σ. Green curves are the median Gaussian values obtained from randomly sampling the
Gaussian distribution and the 5th and 95th percentiles of this sample bound the shaded region. Black curves are for the
observed distribution. Vertical red lines highlight a 1σwarm shift as in the above cases, and the black (green) horizontal line
highlights the percent of days exceeding the preshifted 95th percentile due to a 1σ warm shift for the observed (Gaussian)
cases. This value is always 26% for the Gaussian.
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procedure. To see this, note that the shift examined in sections 2a and 2b is equivalent to using the CDF of the
shift variable s= (Tt� T)/σ. If the empirical CDF emerges from the envelope sampled from the reference
Gaussian, the two differ at the specified level. Importantly, for this application, it is apparent when the
differences in the slope that lead to this separation result from differences in PDF near Tt, the neighborhood
of interest in the warm-side tail (as opposed to differences from Gaussian arising in the cold-side tail).
Third, this leads to an index of non-Gaussianity from which maps can be plotted. Choosing the separation
between these CDFs at a specific shift value, here s= σ, and comparing to the distribution sampled from
the reference Gaussian creates a statistic that has a physical interpretation (increase in the fraction of days
exceeding the threshold for the given shift relative to that of the Gaussian) and also has a direct relationship
to a significance level.

4. Domain-Wide Exceedances

Expanding on the examples in section 3, Figures 3a and 4a show maps of the threshold exceedances for all
grid cells when a uniform 1σ warming is applied to the PDF as in the above examples (similar patterns occur
with a 0.5σ shift; see Figure S5). The map of σ is shown on the right of each figure for reference. Unshaded

Figure 2. Same as in Figure 1 except for JJA and different locations.
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values less than 24% or greater than 28% are outside the 5th–95th percentile range determined by randomly
sampling the reference Gaussian. In DJF (Figure 3), themost striking coherent region of relatively high thresh-
old exceedances is along the Pacific Coast of Alaska and British Columbia stretching inland across the U.S.-
Canada border and into the northern Great Plains including the British Columbia and Great Plains examples
shown in Figure 1. In some coastal locations in Alaska, a temperature that is exceeded 5% of the time in the
current climate would be exceeded nearly 60% under a 1σwarm shift. High values are also found throughout
eastern and southern Mexico, Florida, and parts of the Caribbean, including the Florida and Yucatan exam-
ples shown in Figure 1. Relatively low increases in the frequency of threshold exceedances are found in
the northern third of the domain and across the central and southeast U.S., associated with long warm tails
in these regions (PDFs not shown). While we emphasize that a uniform shift may not be the most plausible
global warming scenario at all locations, the large exceedances speak to the level of statistically significant
non-Gaussianity and the prevalence of short warm-side tails.

In JJA (Figure 4), relatively large increases in threshold exceedances are found along the northern tier of
Alaska and the Yukon and Northwest Territories, the Intermountain West of the U.S., the Midwest and
mid-Atlantic of the U.S., and along the immediate Gulf of Mexico Coast. The implications for future tempera-
ture extremes are significant in these regions, with portions of the eastern half of the U.S. experiencing warm
temperature extremes that only occur 5% of the time in the current climate up to 40% of the time in a climate
with a 1σ shift. Such shifts are exemplified by the Ohio Valley and Louisiana cases shown in Figure 2.

Figure 4. Same as in Figure 3 except for JJA.

Figure 3. (left) Percentage of days exceeding the 95th percentile of the current temperature distribution after a 1σwarm shift. The location of the grid points used in
the examples in Figure 1 is indicated by the labeled black dots. Red and blue shades respond to longer-than and shorter-than Gaussian tails, respectively. Regions
with no shading are where the increase in threshold exceedances is not outside the 5th–95th percentile interval of random samples from a Gaussian distribution. The
1st–99th percentile range is 23–29 about the Gaussian value of 26. (right) Map of standard deviation for DJF temperature anomalies for each grid cell.
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5. Discussion and Conclusions
5.1. Meteorological Interpretation

This analysis shows that short warm-side tails occur in coherent regions at different spatial scales and across
diverse geographic regions (e.g., coastal, inland, high, and low latitudes). We postulate, based on prior work
[Loikith and Broccoli, 2012; Loikith et al., 2015a], that reasonable meteorological interpretations can be offered
for these short tails. While this is a major undertaking, here we offer some examples of important factors.

Advection across a maintained gradient can yield short tails when the gradient is smaller on the warm side.
For example, in DJF along the North Pacific coast, large excursions on the warm side of the PDF are limited by
the moderating influence of the adjacent Pacific Ocean. The only source of relatively warm air during the
winter is from the south, and any warm horizontal temperature advection would be substantially diminished
through sensible cooling as the airmass travels over the relatively cool ocean.

In JJA, explanations are likely less linked to large-scale dynamics and more related to local limitations on
warm-side excursions or processes related to land-atmosphere coupling or mesoscale circulation. For
example, large excursions on the warm side of the PDF are likely limited along the coast of the Gulf of
Mexico, the subtropical and tropical Pacific Ocean, and the Caribbean Sea relative to inland areas because
of the moderating influence of sea breezes. Over the mountains of the western U.S., short warm tails could
be related to summertime convection. The way in which temperature warms for a given location in the future
will be influenced by how thesemechanisms change, providing a target for physics and process-basedmodel
analysis of future climate projections.

5.2. Summary and Conclusions

Non-Gaussian temperature distributions are common throughout NA, with several regions exhibiting
shorter-than-Gaussian warm-side distribution tails. In such cases, a uniform warm shift in the distribution
results in larger increases in extreme warm threshold exceedances than if the distribution was Gaussian.
This paper identifies several examples of shorter-than-Gaussian high-side temperature distribution tails over
NA and documents the effect on extremewarm temperature exceedances under a simple uniformwarm shift
in the distribution. This shift may also be interpreted as a measure of the departure from Gaussianity, with
associated statistical significance estimates. Locations exhibiting short warm tails experience a larger increase
in the fraction of days exceeding the current P95 of the distribution under this shift, suggesting that these
locations may be more prone to large changes in heat extremes. It is notable that examples were found
throughout the domain from the Arctic to the tropics. Areas exhibiting particularly large increases in extreme
warm exceedances are along the northern Pacific coast and along the U.S./Canada border from the Rocky
Mountains to the Great Plains and the Gulf of Mexico coast in winter. In summer, high-side tails deviate
less dramatically from Gaussian, but northern Alaska and western Canada, the western and eastern U.S.,
and the Gulf of Mexico coast show relatively large increases in warm threshold exceedances with the shift
in the distribution.

These results have significant implications for future climate impacts from extreme warm temperatures in
regions identified as having shorter-than-Gaussian high-side tails. If global warming is largely manifested
as a shift in the mean, the shift measure used here can be directly interpreted in terms of the more rapid than
Gaussian increase of the exceedances. While the majority of evidence suggests warming is likely to be largely
realized as a change in themean in most regions, some locations may respond differently, especially in places
where large excursions on the warm side of the PDF may currently be limited by adjacent bodies of water,
disappearing snow and ice cover (such as in Figure 2d), or where changes in atmospheric circulation could
affect the distribution tails. In this case, the short tails are indications of dynamical processes that affect
the distribution in ways more complex than the two parameters of a Gaussian. Changes in other moments
of the distribution may also play a role, such as decreasing variance over time [Schneider et al., 2015].
While this paper focuses on short warm tails, the effect of shorter-than-Gaussian cold tails would be
associated with large decreases in extreme cold exceedances. Such cases could be associated with additional
impacts such as large reductions in days falling below freezing with implications for snow and ice
cover reductions and potential biological impacts. All cases imply that climate models must be able to
realistically reproduce temperature distribution tails as a first step to reliably projecting future changes in
temperature extremes.
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